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VORTEX-FREE PROPULSION IN AN IDEAL FLUID

R. M. Garipov UDC 523.582

A formula for the velocity of a sphere is derived. The sphere is propelled in an ideal
incompressible fluid from a state of rest by the fixed normal component of the velocity of
the fluid at the permeable surface of the sphere. The fluid flow is a potential flow.

Within the framework of potential flows of an ideal incompressible fluid propulsion
(self-propulsion) of bodies from a state of rest is possible owing to a periodic change in
shape even though there is no propulsion force [1, 2]. V. L. Sennitskii [3] and V. V.
Pukhnachev {4] studied propulsion in a viscous fluid due to the fixed velocity of the fluid
on the surface of the body, which was assumed to be permeable. For a sphere the optimal
flows, in the sense of V. V. Pukhnachev, turned out to be potential flow. The ideal formula-
tion of this problem is of interest. In this case the solution can be obtained simply, but
the answer is nontrivial. 1In this connection there arises the following difficult question
(which is not studied here): do close solutions exist in a fluid with low viscosity?

Let the sphere S with the radius 1 (all variables are dimensionless) be propelled from
a state of rest in an ideal fluid, whose density is equal to 1, along the x-axis by the nor-
mal velocity of the fluid v, (relative to S), which is a function of time t, given on S.
Then the velocity potential of absolute motion ¢ satisfies the boundary condition

9%

Fu|g = Vn T %o COS 0= kgﬁ Py (cos 0) 4 x, cos 0,

where Py(x) are Legendre polynomials and P,(x) = x (the flow is axisymmetric) (see Fig. 1);
X, is the velocity of the center of the sphere. We shall calculate the kinetic energy of
the fluid

4 1 [+ 294 a *
Te=3 [ 1Vorax=13 A% 1+ 20+ &y
outside 8 kL
B 4n (1)
%=§m@mwm&%=§n
]

Let P be the total momentum inside S. We transform the equation of motion into Lagrange's
form and integrate once P + 37T¢/dz, = const = 0. . Substituting here the expression (1) we
obtain

P + (2a/3)@y + ¢) = 0, (2)

whence it is obvious that the regime is optimal for cp = 0 (k # 1).
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We specify the form of vy:

uycos® at 0L OB, and m—0, <O,
"“={ 0 at B,<B<m—8,

(0<B,<<n/2 1is a fixed parameter). An elementary calculation gives
c; = ug(1 — 605360), (3)

and for 8, < m/2 there will be other coefficients c # 0 (k # 1). Suppose that within S,
in a cylinder whose radius is sin6, and whose axis is also the x-axis, the fluid flows with
constant velocity u; (relative to S) and the density of the fluid is p,. If p, # 1, then
on flowing into S through the front segment m — 6, ¢ 6 < 7 the temperature of the fluid
seemingly changes instantaneously and on flowing out through the back edge 0 < 8 < 8, the
temperature jumps back to the starting value. The law of conservation of mass gives pu; =
uy,. We call attention to the fact that, generally speaking, the tangential component of
the fluid velocity is discontinuous on the inlet and outlet segments. If (4w/3)V is the
volume of the cavity through which the fluid flows inside S and (4w/3)m is the mass of the
remaining solid part of the sphere, then

P = (4a/)ymzy + (4/3)Vp,(u, + ). 3"
Substituting Eqs. (3) and (3') into Eq. (2) we obtain the formula sought:

z, = —uy(D)3V/[2(m + p, V) + 11 (V =1 — 008360);
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